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Abstract
In the field of evolutionary genetics, researchers estimate phylogenetic relationships 
among populations by reconstructing phylogenetic trees based on molecular data. 
However, a molecular phylogenetic tree can be accurate but have a topology that is not 
consistent with the population tree topology. Due to this phenomenon, called “incomplete 
lineage sorting”, an analysis of a number of loci is required to accurately ascertain the 
phylogenetic relationships among populations. Another caution in phylogenetic 
reconstruction is that trees can only represent branching, not linkages between lineages 
(i.e., recombination in molecules and gene flow and admixture in populations). 
Phylogenetic networks are an effective method for representing the presence of reticulate 
events. However, complex demographic histories of populations are usually reconstructed 
by adopting model-based approaches where a small number of likely population 
topologies are specified in advance, and the best-fit demographic model and parameters 
are estimated.

3.1. Introduction
Phylogenetics is the field of biology concerned with reconstructing the evolutionary 
relationships among groups of organisms. The discipline of phylogenetics has been 
developed mainly in studies of taxonomy and molecular evolution, and it has been 
applied to other academic fields, such as linguistics. Over the past few decades, 
numerous algorithms for efficient and accurate reconstruction of phylogenetic diagrams 
have been proposed. Increased computer processing power and the development of 
generalized programs allow greater access for performing phylogenetic analysis. In this 
paper, I present considerations of the reconstruction and interpretation of phylogenetic 
diagrams.

3.2. Reconstruction of Molecular Phylogenetic Trees
Several books written by biologists and statisticians give detailed descriptions of methods 
for the efficient and accurate reconstruction of molecular phylogenetic trees (Felsenstein 
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2004; Nei and Kumar 2000). Here, I provide a brief introduction to these methods. The 
approaches for inferring molecular phylogenetic trees are classified by the data used to 
produce them and the principles and algorithms employed to arrive at the best tree 
topology.

3.2.1 Distance-based Methods
Distance-based methods, which are also classified as the phenetic approach, require 
determination of pairwise distances between operational taxonomic units (OTUs) prior to 
reconstruction of the phylogenetic tree.
 UPGMA (unweighted pair-group method using arithmetic averages) is a simple 
agglomerative clustering method that assumes a constant rate of evolution, and thus 
produces a rooted tree (Sneath and Sokal 1973). Using UPGMA is fast, but caution is 
needed because incorrect trees will be produced when the assumption is violated.
 The least squares (LS) approach depends on the principle of minimizing differences 
between the observed pairwise distances and distances over the entire phylogenetic tree. 
THE OrDiNarY LS mETHOD estimates branch lengths by minimizing the unweighted sum 
of the squared errors (Cavalli-Sforza and Edwards 1967). In THE WEiGHTED LS mETHOD 
the squared errors are weighted several different ways (Fitch and Margoliash 1967).  
These methods assume independent estimates of pairwise distances. However, when the 
path between two OTUs shares any branches with a path between another two OTUs, the 
pairwise distances will be correlated. Covariances of pairwise distances can be taken into 
account using the GENEraLiZED LS mETHOD (Bulmer 1991). In the LS approach, all the 
possible branching patterns (TOPOLOGiES) are searched, and the FiTCH aND marGOLiaSH 
mETHOD algorithm is used to efficiently obtain the LS tree (Fitch and Margoliash 1967). 
This algorithm utilizes the fact that branch lengths between any three OTUs are 
unambiguously determined.
 The miNimum EVOLuTiON (ME) mETHOD is based on the principle of seeking the tree 
having the minimum sum of branch lengths (Edwards and Cavalli-Sforza 1963; Rzhetsky 
and Nei 1993). In the same way as the LS method, the ME method requires an 
exhaustive search of all possible topologies, which results in a long computation time. 
THE NEiGHBOr-JOiNiNG (NJ) mETHOD is an algorithm that efficiently produces a 
phylogenetic tree based on the ME principle (Saitou and Nei 1987). The NJ method uses 
an agglomerative process that is like that of UPGMA, but it does not require the 
assumption of a constant rate of evolution. Since this method provides fast and accurate 
reconstruction of phylogenetic trees, it is the most widely used method among the 
distance-based methods.

3.2.2 Character-based Methods
Character-based methods, which are also called sequence-based methods and are 
classified as taking a cladistic approach, use the original information of characters, while 
distance-based methods discard the character data once the distance matrix has been 
generated.
 The principle of THE maXimum ParSimONY (MP) mETHOD is that the least complex 
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explanation for an observation is the preferred explanation (Henning 1966). Applied to 
phylogenetic analysis, the MP principle is geared to finding the tree with the minimum 
number of evolutionary changes for a given set of aligned sequences. When the number 
of OTUs is small, an exhaustive search for all the possible topologies is feasible. 
However, when the number of OTUs is ten or more, an exhaustive search carries with it 
a large computational load. There are two types of solutions for this problem: the 
BraNCH-aND-BOuND aLGOriTHm and THE HEuriSTiC SEarCH aPPrOaCH. The branch-and-
bound algorithm, in which large subsets of fruitless candidate trees are discarded, is 
guaranteed to find the minimal tree without having to evaluate all possible trees (Hendy 
and Penny 1982). As the following heuristic search algorithms have been developed, 
HEuriSTiC SEarCH aPPrOaCHES, STEPWiSE aDDiTiON, BraNCH SWaPPiNG, and BraNCH-aND-
BOuND-LiKE aLGOriTHmS (Kumar et al. 1994; Maddison and Maddison 1992; Swofford 
1998), they are also being utilized in distance-based methods.
 With the use of THE maXimum LiKELiHOOD (ML) mETHOD, evolutionary events are 
described under a probabilistic model and the tree judged to have the maximum 
likelihood is chosen (Cavalli-Sforza and Edwards 1967; Felsenstein 1981). This method, 
which utilizes all of the original information of characters, usually provides the most 
robust result but is computationally very intensive and thus extremely slow.
 THE BaYESiaN mETHOD for phylogeny reconstruction produces a posterior probability 
distribution of trees produced from the data and a prior distribution of models and 
parameters (Huelsenbeck et al. 2001; Rannala and Yang 1996). This method has become 
possible due to advances in computational techniques of statistics, particularly, marKOV 
CHaiN mONTE CarLO (MCMC) algorithms; the implementation of MCMC to estimate 
posterior distribution eliminates much of the complex summation and integration.

3.3. Inconsistencies between Molecular and Population Trees: Incomplete 
Lineage Sorting

The use of molecular phylogenetic trees, or GENE GENEaLOGY, based on a single genomic 
region can produce an accurate reconstruction by the above-mentioned methods, if 
sequences in the region have enough informative sites and do not contain any 
recombination. To infer the history of multiple populations or species, molecular data is 
sampled from all of the populations or species that are examined. However, caution is 
observed in cases for which the molecular tree is not consistent with the phylogenetic 
relationships observed between the populations/species. Such systematic error is called 
“iNCOmPLETE LiNEaGE SOrTiNG” (Maddison 1997; Maddison and Knowles 2006; Pamilo 
and Nei 1988; Rosenberg 2002; Takahata 1989). The transfer of genetic information from 
one generation to the next is a stochastic process. Some individuals leave multiple 
descendants and others do not leave any. In addition, of the two homologous 
chromosomes present in an individual, only one is passed to the offspring. The process 
of gene transmission, together with the occurrence of mutations resulting from occasional 
errors in DNA replication, generates patterns of genetic variation within a population 
(Figure 3-1a). Looking backward in time through the generations is an efficient way to 
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describe the probability that the observed gene genealogy will be realized under a certain 
demographic model. This approach is known as coalescent theory in population genetics 
(Hudson 1983; Kingman 1982; Tajima 1983). It is worth noting that as different genomic 
regions have different gene genealogies, the time to the most recent common ancestor 
(MRCA) differs among genomic regions in a population, and the expected time to 
MRCA depends on the effective population size. Incomplete lineage sorting can occur 
due to genetic variation (polymorphisms) in the ancestral population.
 Let us consider a simple case in which one DNA sequence is sampled from each of 
three populations, X, Y, and Z, as shown in Figures 3-1b–3-1e. In contrast to the cases 
shown in Figures 3-1b and 3-1c, the topology of the molecular tree is inconsistent with 
that of the population tree in Figures 3-1d and 3-1e. Incomplete lineage sorting can be 
the result of sequences from X and Y being older than the population divergence time 
between Z and others (T1). For this situation, the occurrence probabilities for the three 
cases of Figures 3-1c–3-1e are equivalent and, consequently, the use of an appropriate 

Figure 3-1  Molecular and population trees. (a) Gene genealogy in a population. (b–e) One DNA sequence is 
sampled from each of three populations, X, Y, and Z. The topology of the molecular tree is 
consistent (b and c) or inconsistent (d and e) with that of the population tree. Occurrence 
probabilities for cases c, d, and e are equivalent. (f–i) Multiple sequences at a homologous locus 
are sampled from each population. (f) A case where the molecular tree exhibits population-specific 
clades. (g) A case where different populations share common variation. (h and i) Molecular 
divergence patterns in three species/populations (constructed by the author)

a b c d e

f g h i
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distance-based method and merging the data from a number of loci provides the 
reconstruction of an accurate population tree from molecular data, even with incomplete 
lineage sorting.
 Next, we will consider the case of sampling multiple sequences at a homologous 
locus from each population. If the time to the MRCA in a particular population is more 
recent than the population divergence, the molecular tree clades will be population-
specific (Figure 3-1f). In contrast, population divergence that is more recent than the 
time to the MRCA means that different populations will share the same variation (Figure 
3-1g). In this case, it is possible that a sequence in a population will be more distant to 
another sequence from the same population than to a sequence from another population. 
Figures 3-1h and 3-1i show the molecular and species divergence patterns observed for 
humans, chimpanzees, and gorillas (Gibbs and Rogers 2012; Scally et al. 2012). Although 
the molecular tree shows population-specific clades, incomplete lineage sorting can occur. 
This phenomenon is due to the interval between species divergences (T1 and T2) being 
shorter than the molecular divergence time in the ancestral population of X and Y.
 In summary, incomplete lineage sorting can be observed for polymorphic characters 
in the common ancestral population and for multiple divergences of the populations 
occurring within a short timeframe. In fields other than evolutionary genetics, such as 
linguistics, researchers may encounter cases in which different trees are produced for the 
examination of different characters (i.e., words in linguistics). These cases may be 
evidence not for the transfer of characters from one population to another (i.e., word 
borrowing) but for incomplete lineage sorting, if some of the characters used to produce 
the trees can be assumed to show a polymorphic state in the ancestral population. 
Although there are some differences between genes and words, as in how they are 
transmitted, incomplete lineage sorting must also be taken into account in linguistic 
studies.

3.4. Phylogenetic Networks Representing Hybrid Populations
One of the most critical problems for producing phylogenetic trees is that the tree 
topology can represent only branching patterns. However, making the assumption that 
evolution is a simple branching process is often unrealistic; evolution is thought to be 
better represented as a branching-and-joining pattern, or reticulate, process. Recently, in 
order to describe rETiCuLaTE EVOLuTiON, a number of methods for drawing 
PHYLOGENETiC networks have been proposed. A detailed overview of these methods is 
provided in a book by Huson et al. (2010). In the evolution of organisms, there are 
several levels of rETiCuLaTE EVENTS: recombination for the molecular level, gene flow 
and admixture for the population level, and horizontal gene transfer and hybridization for 
the species level. The methods appropriate for drawing a network are dependent on what 
level is being examined.
 When attention is focused on the phylogenetic relationships among populations, how 
can reticulate events be detected from among the data of multiple independent characters? 
As explained in the previous section, one cannot judge the presence of reticulate events 
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only by observing that different characters exhibit different tree topologies because 
incomplete lineage sorting alone can explain this observation. To show evidence of a 
reticulate event, one needs to detect an incompatibility among pairwise distances between 
populations WiTH THE aSSumPTiON OF ONLY a SimPLE BraNCHiNG PrOCESS.
 Figure 3-2 shows the results of a previous simulation study (Kimura 2013) in which 
phylogenetic trees and networks for different demographic models were reconstructed 
using the NJ method and the neighbor-net (NN) methods (Bryant and Moulton 2004), 
respectively, using the distance matrix. In a model lacking any reticulate events (Model 
S; Figure 3-2a), the phylogenetic tree well represents the original model (Figure 3-2d), 
and the network assumes a shape similar to that of the NJ tree, without any reticulate 

Figure 3-2  Phylogenetic trees and networks drawn from simulated demographic histories (Kimura 2013). 
Nine populations and two out-groups were included in the simulations. (a) Serial splits model (S): 
in-group populations split off one-by-one in a temporal series. (b) Migration model (M): a 
population splits into nine populations simultaneously, and continuous gene flows occur at 
migration rate m between neighboring populations as in a one-dimensional stepping-stone model. 
(c) Admixture model (A): a population had split, and the two resulting populations (P1 and P9) 
were separated for a time; each of seven other populations was then generated by a distant single 
event of population admixture with different proportions of the two parental populations (7:1, 6:2, 
5:3, 4:4, 3:5, 2:6, 1:7). (d–f) Neighbor-joining trees for the models S (d), M (e), and A (f). (g–i) 
Neighbor-net networks for the models S (g), M (h), and A (i) (constructed by the author)

a

b

c

d

e

f

g

h

i



3. Inferring Population Phylogeny from Genetic Data 31

structures (Figure 3-2g). In contrast, in a model with gene flows between populations 
(Model M; Figure 3-2b) and a model with population admixtures (Model A; Figure 3-2c), 
the networks with reticulation structures are reconstructed (Figures 3-2h and 3-2i), while 
the trees are distorted because of the discrepancies among the pairwise distances between 
populations (Figures 3-2e and 3-2f ). When a tree analysis is applied to populations that 
have a history of admixture, caution regarding the distortion of the tree is warranted, 
such that the most mixed population is prone to earlier branching out from the clusters. 
Some previous studies employing phylogenetic tree analysis may have been misleading 
for this reason.
 In an example of the analysis of real data (Figure 3-3), single nucleotide 
polymorphism (SNP) data of Indonesian and Melanesian populations from The HUGO 
Pan-Asian SNP Consortium (2009) were reanalyzed using an African population, the 
Yoruba, as an outgroup. The reconstructed NJ tree (Figure 3-3a) and NN network (Figure 
3-3b), showing patterns similar to the tree in Figure 3-2f and the network in Figure 3-2i, 
indicated that the populations in the Lesser Sunda Islands (Alorese, Lembata, Lamaholot, 
Manggarai, and Kambera) are likely to have been formed by admixtures in the past 
between two different populations, known as Austronesians and non-Austronesians. 
Caution is needed in that, if only the tree is shown, different and incorrect interpretations 
may be made.

Figure 3-3  Phylogenetic analysis of SNP data of Indonesian and Melanesian populations. Data were extracted 
from The HUGO Pan-Asian SNP Consortium (2009) and reanalyzed using Yoruba (YRI) as an 
out-group. (a) Neighbor-joining tree. (b) Neighbor-net network. AX-ME, Melanesian; ID-AL, 
Alorese; ID-LE, Lembata; ID-LA, Lamaholot; ID-SO and ID-RA, Manggarai; ID-SB, Kambera; 
ID-MT, Mentawai; ID-TR, Toraja; ID-ML, Malay; ID-KR, Batak Karo; ID-TB, Batak; ID-DY, 
Dayak; ID-JA and ID-JV, Javanese; ID-SU, Sundanese (constructed by the author)

a

b



Kimura Ryosuke32

3.5. Model-based Inference of Population Demographic History
If one assumes simple demographic histories of populations without reticulate events and 
with only a few unknown demographic parameters, the real population topology and 
parameters can be estimated using a relatively small data set and with relatively simple 
processes. However, under the assumption of much more complex histories with respect 
to reticulate events and variations in population size, large data sets including a number 
of genomic regions are required, and even then, it is difficult to analytically reconstruct 
the population topology. For example, it would be hard to precisely reconstruct the 
original demographic models in Figures 3-2b and 3-2c only from the networks shown in 
Figures 3-2h and 3-2i. Although network analysis can detect the presence of reticulate 
events, the network does not provide details of reticulation events, e.g., how many and 
direction of the migration events, proportions of admixture, and identification of parental 
populations (the real parental populations often remain unexamined). To reconstruct a 
complex demographic history, therefore, population geneticists use mODEL-BaSED 
aPPrOaCHES, in which a small number of likely population topologies must be specified 
in advance and, among them, the best-fitting demographic model and parameters are 
estimated.
 In recent years, a great deal of effort has been put toward developing statistical 
approaches that use genomic data to estimate demographic parameters in complex 
demographic models, including migration. Moment-based methods, which use only means 
and variances of divergences in allele frequencies, are computationally feasible, but these 
have only relatively low statistical power and limited application (Lipson et al. 2013; 
Patterson et al. 2012; Pickrell and Pritchard 2012; Reich et al. 2009). Likelihood-based 
methods are a widely-applied approach that aims to compute the likelihood, i.e., the 
probability of generating the observed data over multiple genomic regions under a given 
model and set of parameters (Beerli and Felsenstein 2001; Hey and Nielsen 2004; Hey 
2005; Nielsen and Wakeley 2001; Nielsen and Beaumont 2009; Stephens and Donnelly 
2000). Although it is ideal to compute the likelihood of a demographic model using all 
observed gene genealogies, it is not easy to apply such “full-likelihood” approaches for 
reconstructing complex histories. Since the likelihood cannot be derived analytically in 
most demographic models, the computation of likelihood relies on simulations that 
explore highly dimensional parameter space. However, this strategy is computationally 
inefficient and, thus, expensive because the probability of exactly realizing each gene 
genealogy under a given model is very small. To overcome this problem, much focus has 
recently been placed on aPPrOXimaTE BaYESiaN COmPuTaTiON (ABC) methods, which use 
summary statistics instead of gene genealogies to find the parameter values that generate 
data sets with high similarity to the observed data sets (Balding and Nichols 1997; 
Beaumont et al. 2002; Beaumont 2010; Chikhi et al. 2001; Marjoram et al. 2003; Nielsen 
and Beaumont 2009; Wang 2003).
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3.6. Conclusion
The population tree is not identical to trees based on characters. When the relationships 
among populations are estimated from their characters, researchers need statistical and 
probabilistic methods and must be careful of the presence of incomplete lineage sorting 
and reticulate events. Phylogenetic networks should be used in place of trees to elucidate 
relationships among populations because a history without reticulate events is unrealistic 
in many cases. Model-based approaches must be used to select the best-fitting model and 
to estimate parameters for populations having complex demographic history. Furthermore, 
the population history is sometimes too complicated to be represented as a simple 
diagram. Therefore, using phylogenetic analysis in combination with other statistical 
methods, such as the principle component analysis (Patterson et al. 2006; Price et al. 
2006) and clustering analysis (Alexander et al. 2009; Pritchard et al. 2000; Tang et al. 
2005), will be more effective for elucidating population history. Remarkable advances 
have been made in the previous two decades in statistical methods to efficiently and 
accurately infer the demographic history of and relationships among human populations 
from genomic variation. These methods may contribute to other fields of science, 
including linguistics.
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